

Impact of trypanosomiasis on the blood parameters and growth factor (K factor) on freshwater fish *Heteropneustes fossilis* (Bloch)

Verma Vinod Kumar^{1*}, Jyoti¹, Kumar Anuj², Bhaskar Manju³ and Mishra Saurabh⁴

1. Department of Life Sciences and Biotechnology, C.S.J.M. University, Kanpur, 208024, INDIA

2. Department of Zoology D.A.V. College, C.S.J.M University, Kanpur, 208001, INDIA

3. Department of Zoology, D.B.S. College, C.S.J.M University, Kanpur, 208001, INDIA

4. Department of Pharmacy, M.J.P Rohilkhand University, Bareilly, 243006, INDIA

*eeshajolly@gmail.com, vinod@csjmu.ac.in

Abstract

Like other living organisms, fishes could host internal or external parasites that, while may not be usually fatal, thrive at the host's expense, causing pathological and detrimental effects. Research on the pathological effects of *Trypanosoma* infections in fish remains limited, highlighting the need for further studies to understand their impact on fish health and physiology. This study investigates the pathological impact of *Trypanosoma* sp. infection on fish, focusing on inflammatory responses and physiological changes in blood parameters. *Trypanosoma* sp. infection was confirmed through blood smear analysis, which revealed significant alterations in hematological indices. Hemoglobin levels decreased markedly from 13.8% in uninfected fish to 9.50% in heavily infected fish. Erythrocyte counts also declined significantly from $1.80 \times 10^6/\text{Cumm}$, while leucocyte counts increased from 21,400/Cumm to 26,400/Cumm as parasite load intensified.

Mean corpuscular hemoglobin (MCH) values exhibited an initial rise during mild infections (60 Pg) but fell to 52.77 Pg during severe infections. Growth indices were notably impacted, dropping from 107.07% in uninfected fish to 77.73% in cases of heavy infection, correlating with increasing parasite density. These findings highlight the detrimental effects of *Trypanosoma* sp. on fish health, indicating reduced metabolism and suppressed growth in infected individuals. Blood diagnostics provide valuable insights into the physiological and pathological status of fish under parasitic stress, emphasizing the need for effective management strategies.

Keywords: Trypanosomiasis, Blood parameters, Growth factor (K factor), *Heteropneustes fossilis*.

Introduction

Fishes are the most diverse group of aquatic creatures known as cold-blooded vertebrates which are adaptive in swimming and breathing with specific characteristics. Various fish species have scales to protect themselves and an effective body for realistic swimming³³. Of approximately 28,900 fish

species found worldwide, 13,000 are classified as freshwater, with 170 families and 2,513 genera and are found in rivers and lakes, which make up 1% of the world's total water supply. The remaining 16,000 species are found in saline environments, which make up 70% of the planet's surface²⁹. Furthermore, fish is regarded as a vital component of human diets and contributes significantly to the economies of many nations across the world^{4,9}.

Numerous parasites have an impact on fish either directly or indirectly, leading to a high rate of death in this species. Protozoa (ciliates, flagellates, microsporidians and myxozoans), platyhelminthes (monogenean, digenean and cestodes), nemathelminthes and acanthocephala are the four main types of parasites that infect fish. Numerous deadly diseases that cause mass mortality are made easier by the physiology of fish^{2,28}.

Additionally, gastrointestinal (GI) helminths, which are major fish parasites and cause significant losses to the fish industry, are among the many parasites that live in fish. The nutrition, metabolism and secretory processes of the digestive system are all impacted by parasites, which seriously harm the nervous system and prevent fish from reproducing normally. The primary cause of the decline in fish populations is parasite threats²². Among the several protozoan groups, ciliates and flagellates primarily infect pond water fish and have a direct life cycle. Conversely, microsporidians are intracellular and need the host's tissue to reproduce (FAO 2015). Consuming spores from diseased fish or food sources, the fish contracted the infection.

Fish's physiological state and health can be assessed using a variety of techniques including hematological assessment^{6,7,11,17,24}. Numerous details on fish oxygen transport ability, immunological potential, stress level, illness, intoxication, nutritional state etc. can be found using hematological and biochemical indicators. Routine hematological analyses include measurements of biochemical indices, such as plasma component concentrations or activities, as well as evaluations of blood cell counts and other cell-related factors. Because of the shape of blood cells (all cells are nucleated), manual procedures are primarily used in fish hematology. As an alternative to manual approaches, attempts have recently been made to do automatic hematological examinations of fish blood^{11,13,14,35,37}.

Haemoflagellates with a single free flagellum at the front of their bodies are known as trypanosomes. *T. trichogasteri var. fasciatae*²¹ and *T. piscidium*^{18,19} were the trypanosomes identified from fish blood through previous researches in India. From moderate anemia linked to low parasitaemia levels to severe pathological alterations brought on by a high parasite burden, the symptoms of piscine trypanosomiasis can vary widely^{23,26}.

The important parasites of fish grown in intensive culture are protozoa when the host fish is overcrowded, these parasites can multiply, causing emaciation, weight loss, mortality and ultimately causes the economic losses^{16,30}. *Trypanosoma carassii danilewskyi* was identified as the trypanosome causing the infection in blood parrot cichlids fish through morphological, genetic investigation and histological examination revealing a significant cause of anemia, anoxia and steatosis in the liver as well as a pigment accumulation in the kidneys and spleen that was probably caused by melanomacrophages²⁵. Above finding express that the haemoparasites stress suppress the haematological profile and the piscine growth index (k factor) has not yet been studied. Therefore, the goal of the current study is to discover and document the trypanosoma, the blood parasites that affect population of freshwater fish in the Ganga River in the Kanpur area. So it is a modest attempt to investigate the aforementioned facets of fish trypanosomiasis.

Material and Methods

The catfishes *Heteropneustes fossilis* (10-25 gms.) were used for pathogenesis studies. The experimental fishes were collected from Vijay Nagar Fish Market, Kanpur district. A total of 39 fish of different sizes and body weights were scanned for studies. The haematological investigation were conducted by collecting blood from the caudal vein of fish with the help of anticoagulated syringe. Haemoglobin (Hb%), Total Erythrocyte Counts (TEC), Total Leucocyte Counts (TLC/cumm) and MCH (Mean Corpuscular Haemoglobin), were estimated in infected fishes. Giemsa stain was applied to blood smears after they had been fixed in 100% methanol for five minutes³⁹.

Under a compound microscope, *Trypanosomes* were identified as the organism with non-infected (No *Trypanosomes*/100 RBC), mild infection (01 *Trypanosomes*/100 RBC), moderate Infection (02 *Trypanosomes*/100 RBC) and heavy Infection (03-04 *Trypanosomes*/100 RBC) and the pictures were captured when fish blood smear was tested using oil immersion. In other investigations the fisheries biologists usually use the link between length and weight, also referred to as the growth factor or K factor, as an index to measure the condition of well-being in the workplace. Fish that have a high k factor, are heavier than their length and vice versa³⁸.

Results

A parasitological analysis for growth index and haematology and trypanosomiasis showed that total out of 39

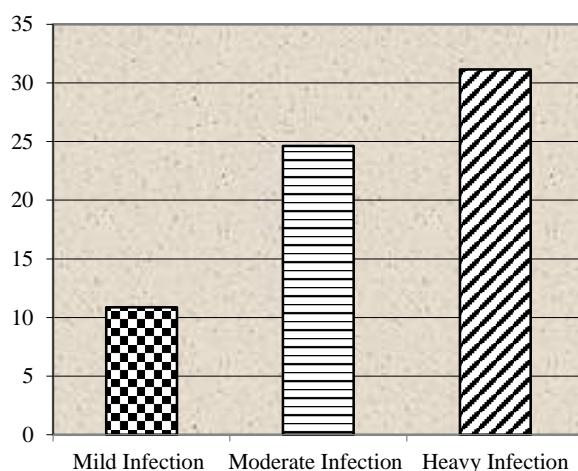
experimental fishes, 28% were non-infected (Fig. 1) and 72 % (Fig. 2: Mild infection, Fig. 3: Moderate infection and Fig. 4: Heavy infection) were infected, so these fishes were categorised in four different groups. Fishes without infection show a healthy status of growth index and blood profile in which the growth index significantly falls as well as the number of trypanosomes increases in the blood.

The value of the growth index was significantly higher in (105.2) noninfected group of fishes and further decreased (89.37 to 77.72) from mild to heavy infected fishes (Table 1). The percentage changes in growth index showed an increase in their values which is 15.54% (Mild infection) to 26.11 (Moderate infection) and 26.55% (Heavy infection) as in table 2 and graph 1.

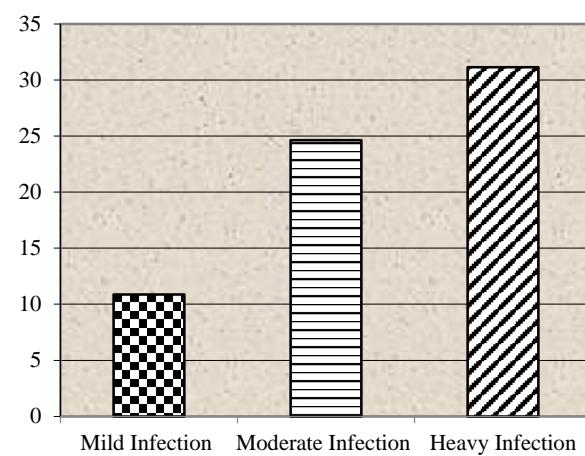
Haemoglobin values were 13.8 gram (Noninfected) which showed a significant reduction 9.5 gram (Heavy infection of trypanosome (Table-1; fig.3) Subsequently the percentage changes increased from 10.86% to 31.15% from mild to heavy infection (Table 2; Graph 2). The total erythrocyte counts also showed drastic changes in their values which were reduced from 2.58×10^6 Cumm in non-infected to 2.05×10^6 Cumm to 1.80×10^6 cumm from mild infection to heavy infection (Table 1; Fig. 3). The percentage changes also increase from mild (20.54) to heavy infection (30.24) (Table 2; Graph 3).

The TLC counts significantly increased from 21400 (Non-infected) to 26400 (Heavy Infection) their numbers as well as the number of trypanosomes increased in blood per 100 of RBC (Table 1). The percentage changes decreased from 14.01 (Mild infection) 23.36 to (Heavy infection) (Table 2; Graph 5). The percentage changes in MCH were highly effected form from infection, it increased 10.88 % (mild infection) to 0.62% (Heavy infection) as compared to no infected group of fishes (Table 2; Graph 5). In the present work the erythrocyte membrane damage occurs at the site of contact when trypanosomes and RBC come into close contact (Fig. 5).

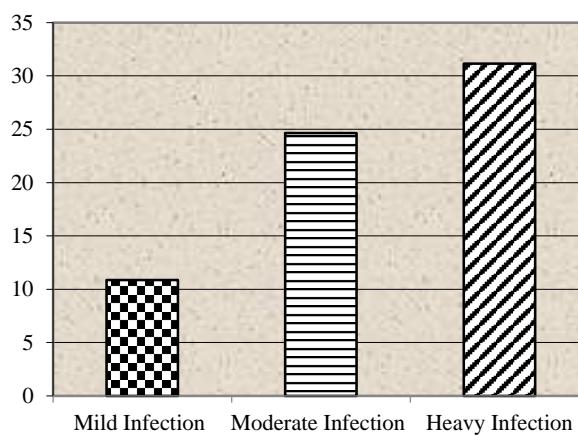
Discussion

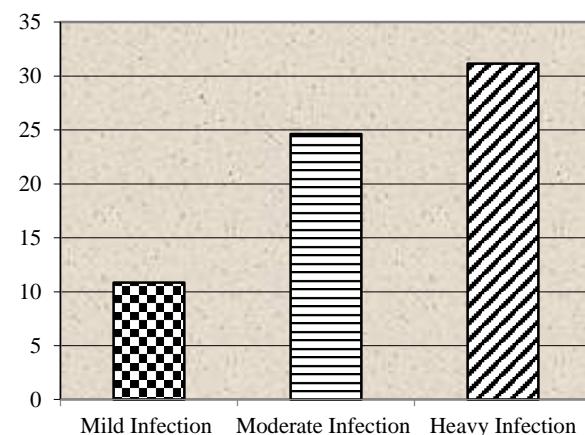

The present study investigates the impact of trypanosomiasis on the blood parameters and growth factor (K factor) of the freshwater fish *Heteropneustes fossilis*. The findings highlight significant alterations in haematological indices and a noticeable decline in the condition factor, suggesting severe physiological and metabolic disturbances caused by the parasitic infection^{20,31}. Haematological parameters serve as crucial indicators of the health status of fish. Infected *H. fossilis* exhibited a marked reduction in red blood cell (RBC) count, haemoglobin concentration (Hb) and hematocrit (Hct) values when compared to healthy controls^{1,5}.

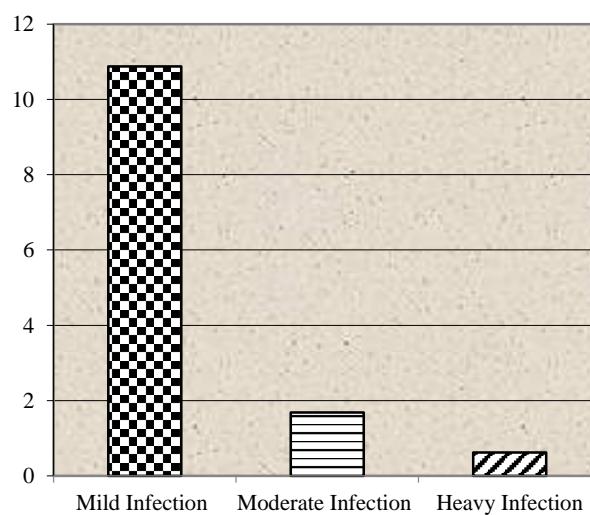
These findings align with previous studies, which attribute such declines to haemolysis and impaired erythropoiesis caused by trypanosome parasites¹⁵.

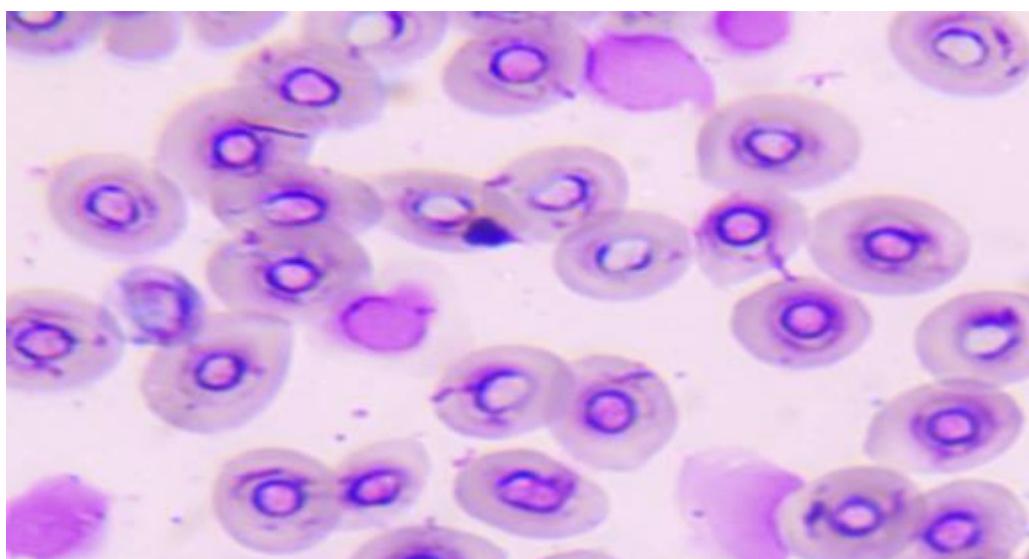

Table 1

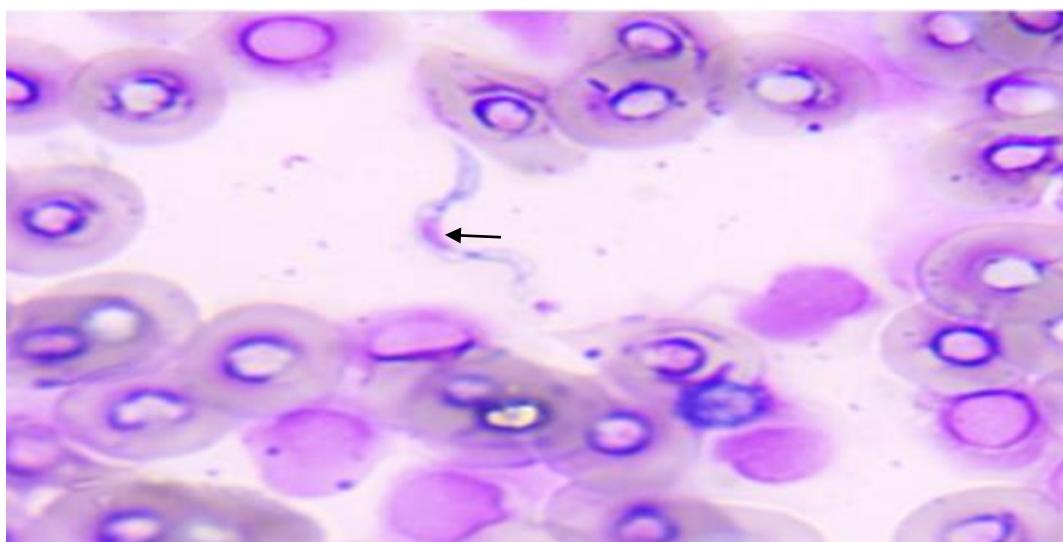
The mode of trypanosomiasis on the blood parameters and growth index of freshwater catfish *Heteropneustes fossilis*

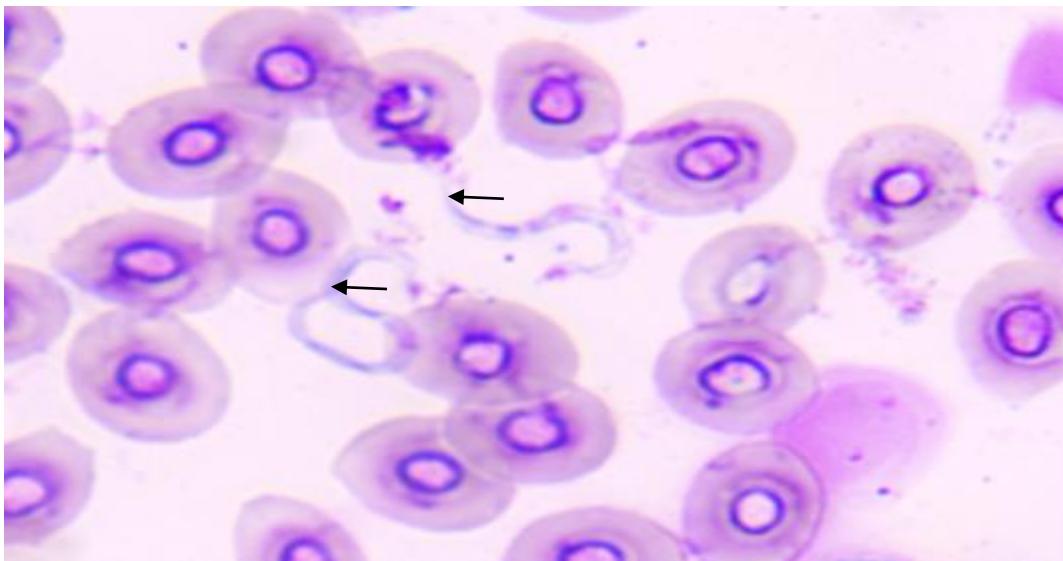

S.N	Length (Cm)	Weight (Gram)	Growth index (K) Factor	Mean	Mode of Infection	No. of Pathogen/100 RBC	Percentage %	Haemoglobin	Total Erythrocytes Counts	Total Leucocytes Counts	Pg	MCH	Mean
1	14	15.66	111.9	105.82	No Infection	---	0	13.9	2.80	21900	49.64	54.11	
2	11	10.28	93.45			---	0	14.3					
3	14	15.57	111.2			---	0	13.8					
4	16	20.34	127.1			---	0	13.4					
5	13.4	12.17	90.82			---	0	13.5					
6	15	15.7	104.7			---	0	13.7					
7	15.1	15.16	100.4			---	0	13.7					
8	14	14.12	100.9			---	0	13.9					
9	16	15.78	98.62			---	0	14.0					
10	16	18.1	113.1			---	0	13.9					
11	14	15.66	111.9			---	0	13.9					
12	11	9.1	82.72	89.37	Mild Infection	+	1	12.5	2.24	24700	55.8	60.00	
13	16.7	22.78	136.4			+	1	12.6					
14	11.2	9.2	82.14			+	1	12.0					
15	11.9	9.3	78.15			+	1	12.4					
16	13	10.22	78.61			+	1	12.1					
17	13	10.17	78.23			+	1	12.2					
18	13.2	10.4	78.78			++	2	10.2					
19	13.5	10.5	77.77	78.18	Moderate Infection	++	2	10.7	1.99	25900	51.25	55.02	
20	13.4	10.23	76.34			++	2	10.9					
21	12.8	9.68	75.62			++	2	9.9					
22	13	11.02	84.76			++	2	10.4					
23	12	9.1	75.83			++	2	10.2					
24	12.2	9.16	75.08			++	2	10.8					
25	13.3	10.21	76.76			++	2	10.4					
26	11.8	9.76	82.71			++	2	10.0					
27	14	10.96	78.28	77.72	Heavy Infection	+++	3	10.2	1.71	28800	59.64	53.77	
28	19	17.69	93.1			+++	3	9.3					
29	12	8.59	71.58			+++	3	10.5					
30	14.5	11.1	76.55			+++	4	9.2					
31	9	5.42	60.22			+++	3	9.3					
32	10	7.83	78.3			+++	3	9.8					
33	11.2	8.1	72.32			+++	3	9.3					
34	17	19.1	112.4			+++	3	9.2					
35	13	10.3	79.23			+++	3	9.9					
36	14	10.8	77.14			+++	3	9.0					
37	14.2	10.14	71.4			+++	3	9.0					
38	14.6	11.02	75.47			+++	3	9.4					
39	10	6.44	64.4			+++	3	9.5					

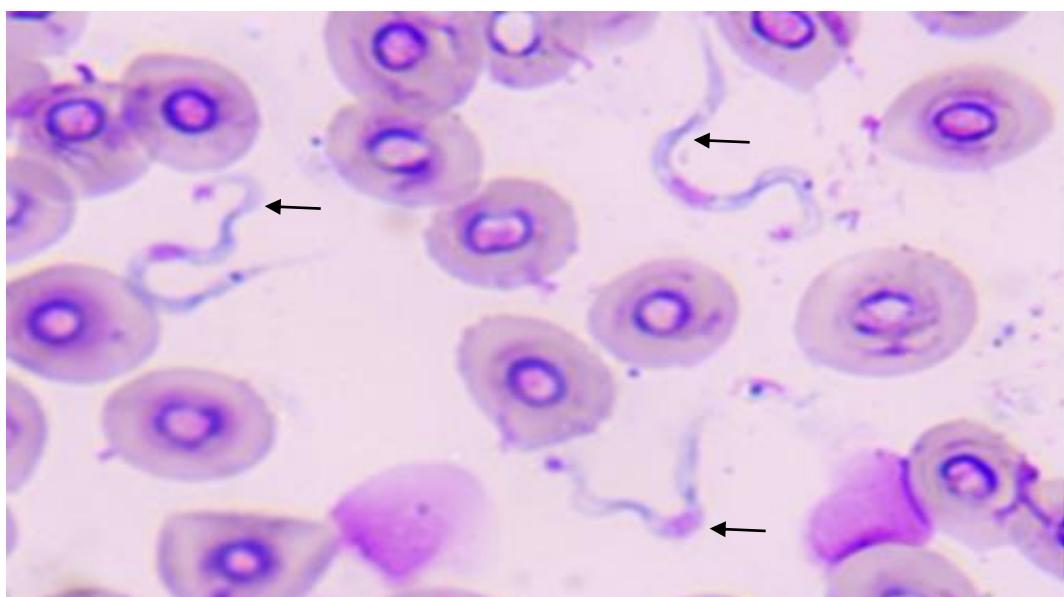

Graph 1: The percentage changes in growth index (K factor) of trypanosome-infected freshwater fish *Heteropneustes fossilis*


Graph 2: The percentage changes in haemoglobin percentages (Hb%) of trypanosome-infected freshwater fish *Heteropneustes fossilis*


Graph 3: The percentage changes in total erythrocytes count (TECx10⁶/Cumm) of trypanosome-infected freshwater fish *Heteropneustes fossilis*


Graph 4: The percentage changes in total leucocytes counts of trypanosome-infected freshwater fish *Heteropneustes fossilis*


Graph 5: The percentage changes in total MCH (Pg) value of trypanosome-infected freshwater fish *Heteropneustes fossilis*


Fig. 1: Microphotograph shows the noninfected blood/100 of freshwater teleost *Heteropneistes fossilis*

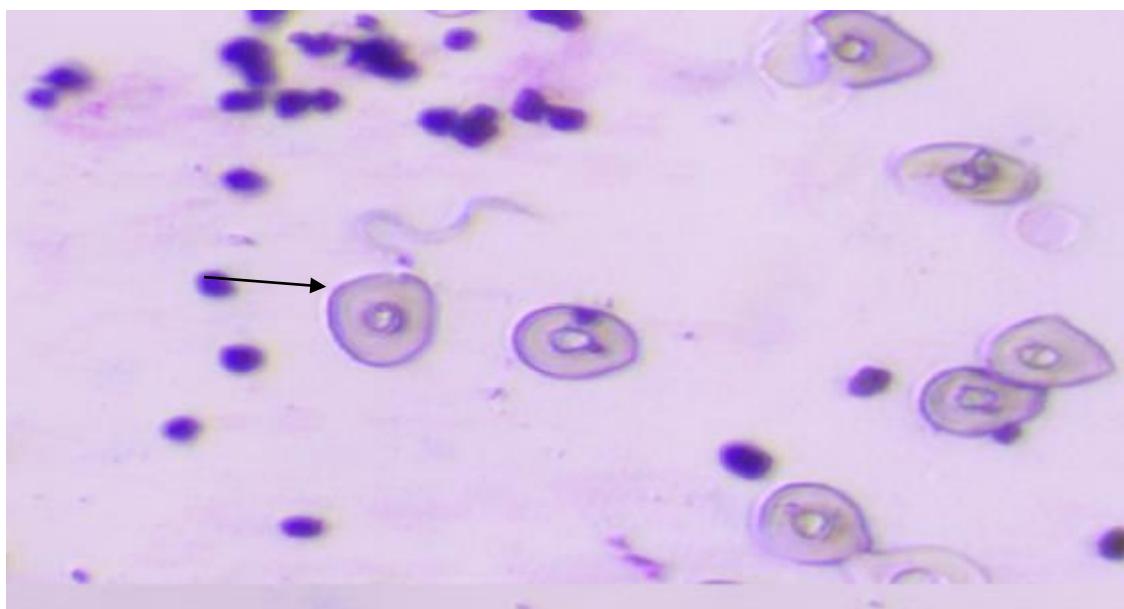

Fig. 2: Microphotograph shows the noninfected blood/100 of freshwater teleost *Heteropneistes fossilis*

Fig. 3: Microphotograph shows the noninfected blood/100 of freshwater teleost *Heteropneistes fossilis*

Fig. 4: Microphotograph shows the three trypanosomes /100 of freshwater teleost *Heteropneistes fossilis*

Fig. 5: Microphotograph shows the trypanosomiasis induced in the outer membrane of RBC of freshwater teleost *Heteropneistes fossilis*

Table 2
Shows the percentage changes in blood parameters and growth index due to trypanosomiasis as compared with noninfected freshwater catfish *Heteropneustes fossilis*

S.N.	Parameters	Trypanosomiasis		
		Mild Infection (+)	Moderate Infection (++)	Heavy Infection (+++)
1	Growth Factor (K Factor)	15.54	26.11	26.55
2	Hb % (Haemoglobin)	10.86	24.63	31.15
3	TECx10 ⁶ /Cumm (Erythrocytes)	20.54	26.74	30.23
4	TLC /Cumm (Leucocytes)	14.01	17.28	23.36
5	MCH (Pg)	10.88	1.68	0.62

The reduced RBC count and haemoglobin levels are indicative of anaemia, a common pathological condition observed in trypanosomiasis affected fish. Additionally, the leucocytosis in infected fish may suggest an immune response to combat parasitic infection, as white blood cells play a pivotal role in defending against parasitic invasions³⁶. The condition factor (K factor), which reflects fish's overall health and nutritional status, was significantly reduced in infected *H. fossilis*. *Chrysichthys nigrodigitatus* parasites and the length-weight relationship were examined by Esiest⁸ in the Cross River Estuary, Itu local government area, Akwa Ibom State, Nigeria.

According to the study, there was little parasitic worm burden and little infection severity. Kurshid and Ahmad²⁷ demonstrated that the length of the host influenced both the prevalence and the average number of parasites.

The decline in the K factor indicates poor energy reserves, impaired feeding efficiency and a diversion of metabolic energy toward immune responses and parasite management. This reduction in the condition factor aligns with previous findings in other fish species affected by parasitic diseases³⁴. Moreover, the significant changes in the mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) further support the diagnosis of anemia. An increase in MCV and MCH suggests macrocytic anaemia, likely resulting from erythropoiesis stress and compensatory mechanisms activated in response to anaemia^{11,40}.

Alpidio et al³ also supported the present work in their experiments in which they reported mechanical damage and metabolic harm brought on by host-parasite interactions in RBCs of sheep. The decreased hematocrit during infection is caused by the altered erythrocytes' susceptibility to mononuclear phagocytic clearance.

Conclusion

The results of the study provide evidence that trypanosomiasis significantly compromises haematological parameters and the growth factor in *Heteropneustes fossilis*. These changes affect fish physiology and have broader implications for aquaculture and fisheries management. Further studies focusing on the molecular mechanisms behind these changes and effective treatment strategies are essential to mitigate the impact of trypanosomiasis in aquaculture systems.

Acknowledgement

The authors express their gratitude to the administration of Chhatrapati Sahu ji Maharaj University, Director, Department of Life Sciences and Biotechnology and HOD Department of Zoology, D.A.V. College, Kanpur (U.P.), Uttar Pradesh Research and Development (UPR&D) and Uttar Pradesh Centre for Excellence (UPCOE). We are also thankful to C.V. Raman Minor Research Project Scheme of CSJMU, Kanpur.

References

1. Ahmed I., Reshi Q.M. and Fazio F., The influence of the endogenous and exogenous factors on hematological parameters in different fish species: a review, *Aquaculture International*, **28**, 869-899 (2020)
2. Al-Marjan K.S.N. and Abdullah S.M.A., Some ectoparasites of the common carp in Alkava fish hatchery I Erbil province, Conference: Second Kurdistan Conference on Biological Science, *J. Duhok Univ.*, **12(1)**, 102-107 (2009)
3. Alpidio A. Boada-Sucre, Marcello S.R.S., Lucinda M. Tavares-Marques, Héctor J.F. and Reyna-Bello A., *Trypanosoma vivax* adhesion to red blood cells in experimentally infected sheep, Hindawi Publishing Corporation Pathology Research International, 1- 9 (2016)
4. Andronova I.V. and Yakimovich E.A., World fish market: Current trends, state and prospects, *RUDN J. Econom.*, **27**, 259-268 (2019)
5. Chen H. and Luo D., Application of haematology parameters for health management in fish farms, *Reviews in Aquaculture*, **15(2)**, 704-737 (2023)
6. Clauss T.M., Dove A.D.M. and Arnold J.E., Hematologic disorders of fish, *Vet. Clin. North. Am. Exotic. Anim. Pract.*, **11(3)**, 445-462 (2008)
7. Docan A., Grecu I. and Dediu L., Use of hematological parameters as assessment tools in fish health status, *J. Agroaliment. Process. Technol.*, **24(4)**, 317-324 (2018)
8. Esiest U.L.P., Length-weight relationship and parasites of *Chrysichthys nigrodigitatus* in Cross River Estuary Itu local government area Akwa Ibom State, Nigeria. *Basic Res J. Agri. Sci. Rev.*, **2(7)**, 154-165 (2013)
9. Essetchi P. Kouamélan, Guy G. Teugels, Valentin N'Douba, Gouli Gooré Bi and Tidiani Koné, Fish diversity and its relationship with environment variables in a West Africa basin, *Hydrobiologia*, **505**, 139-146 (2003)
10. FAO, FAOSTAT statistics database of the Food and Agricultural Organization of the United Nations (FAO), Rome, Italy (2015)
11. Fazio F., Fish hematology analysis as an important tool of aquaculture: a review, *Aquaculture*, **500**, 237-242 (2019)
12. Fazio F., Marafioti S., Filiciotto F., Buscaino G., Panzera M. and Faggio C., Blood hemogram profiles of farmed onshore and offshore gilthead sea bream (*Sparus aurata*) from Sicily, Italy, *Turk. J. Fish. Aquat. Sci.*, **13**, 415-422 (2013)
13. Fazio F., Saoca C., Costa G., Zumbo A., Piccione G. and Parrino V., Flow cytometry and automatic blood cell analysis in striped bass *Morone saxatilis* (Walbaum, 1792): a new hematological approach, *Aquaculture*, **513**, 734-739 (2019)
14. Febrianti Riska Ayu, Narulita Erlia and Murdiyah Siti, GC-MS Analysis of Antlions (*Myrmeleon formicarius* L.) Ethanol Extract with The Potential to Reduce *Staphylococcus aureus* Infection

Causes Diabetic Ulcers Infection, *Res. J. Chem. Environ.*, **28(6)**, 72-78 (2024)

15. Fonseca M.S., Santos A.J., Mendonça M.A., Rodamilans G.M., Marques F.S., Biondi I. and Portela R.W., Trypanosoma sp. infection in Boa constrictor snakes: morphological, hematological, clinical biochemistry, molecular and phylogenetic characteristics, *Parasitol. Res.*, **123(1)**, 21 (2024)

16. Giana B.G., Kate H.S., Jose A.D., Cathrine C., Scott H., Terrrence M.L. and Dean J.R., Use of environmental DNA (eDNA) and water quality data to predict protozoan parasites outbreaks in fish farms, *Aquaculture*, **479**, 467-473 (2017)

17. Grant K.R., Fish hematology and associated disorders, *Vet. Clin. Exot. Anim.*, **18(1)**, 83–103 (2015)

18. Gupta D.K., Gupta N. and Gangwar R., Two new species of *Trypanosoma* from freshwater fish (*Heteropnueutes fossilis* and *Channa punctatus*) from Bareilly, India. *J. Parasitic Dis.*, **30**, 58-63 (2006)

19. Gupta D.K., Gupta N. and Yadav P., *Trypanosoma piscidium* n. Sp. And its role in inducing anywhere in colisa fasciatus, In Biodiversity conservation, environmental pollution and ecology, vol. 2, Panday B.N., Choudhary R.K. and Singh B.K., Eds., APH Publishing Corporation, New Delhi, 127-133 (2003)

20. Gupta N. and Nigar S., Detection of blood parasites and estimation of hematological indices in fish, In Gupta N. and Gpta V., eds., E Experimental Protocols in Biotechnology, Springer Protocols Handbooks, New York, NY, Humana, 43-73 (2020)

21. Gupta N., Saraswat H. and Gupta D.K., A new variety of *Trypanosoma* (Kinetoplastida: trypanosomatidae) from the blood of *Colisa fasciatus* and its role in inducing haematological changes, *J. Parasitol. Appl. Anim. Biol.*, **7**, 33-40 (1998)

22. Habib S., Studies on the helminth parasites of a freshwater fish, *Wallago attu*, M.Sc. Thesis, Department of Zoology, Govt. College, Lahore, Pakistan (2007)

23. Islam A.K. and Woo P.T.K., Trypanosoma danilowskyi in *Carassius auratus*: the nature of the protective immunity in recovered gold fish, *J. Parasitol.*, **77**, 258-262 (1991)

24. Ivanc A., Haskovic E. and Jeremic Dekic S.R., Haematological evaluation of welfare and health of fish, *Praxis Vet.*, **53(3)**, 191–202 (2005)

25. Jun-Yu Z., Xu L., Bi Y.X., Zhang J., Hide Lai G. and Lun Z., First outbreak of trypanosomiasis in farmed blood parrot cichlids (*Vieja melanura*♀ × *Amphilophus citrinellus*♂) from southern China, *Aquaculture*, **588**, 740944 (2024)

26. Kamaran S.M. and Shamall M.A.A., Infection of common carp (*Cyprinus carpio*) in Ainkawa fish hatchery, Erbil Province, Kurdistan Region, Iran, *Journal of Duhok University*, **14**, 102-107 (2013)

27. Kurshid I. and Ahmad F., Survey of helminthes in cyprinoid fish of Shallabugh wetland, *IJALS*, **1(6)**, 75-77 (2013)

28. Lerssuttichawal T., Maneepitaksanti W. and Purivirojkul W., Gill Monogeneans of potentially cultured tilapias and first record of *Cichlidogyrus mbirizei* Bukiinga et al, in Thailand, *Walailak J Sci & Tech*, **13(7)**, 543-553 (2016)

29. Lévêque C., Oberdorff T., Paugy D., Stiassny M.L.J. and Tedesco P.A., Global diversity of fish (Pisces) in freshwater, *Hydrobiologia*, **595**, 545-567 (2008)

30. Luo D., Xu L.W., Liu X.H., Sato H. and Zhang J.Y., Outbreak of trypanosomiasis in net-cage cultured *barramundi*, *Lates calcarifer* (Perciformes, Latidae), associated with Trypanosoma epinepheli (Kinetoplastida) in South China Sea, *Aquaculture*, **501**, 219-223 (2019)

31. McAllister M., Phillips P. and Belosevic M., Trypanosoma carassii infection in goldfish (*Carassius auratus* L.): changes in the expression of erythropoiesis and anemia regulatory genes, *Parasit. Res.*, **4**, 1147-1158 (2019)

32. Mohammed Y.M., Adamu K.M., Ismail A., Umar M. and Kanki H., Prevalence of protozoan parasites in some freshwater fishes of Dangana Lake Lapai, Niger State Nigeria, *Intl. J. Veter. Sci. Animal Husb.*, **5(2)**, 13-16 (2020)

33. Pablo A.T., Beauchard O., Bigorne R., Blanchet S., Buisson L., Conti L., Cornu Jean-François, Dias M.S., Grenouillet G., Hugueny B., Jézéquel C., Leprieur F., Brosse S. and Oberdorff T., A global database on freshwater fish species occurrence in drainage basins, *Scientific Data*, **4**, 1-6 (2017)

34. Rahman M. et al, Effects of dietary supplementation of natural Spirulina on growth performance, hemato-biochemical indices, gut health and disease resistance to *Aeromonas hydrophila* of Stinging catfish (*Heteropneustes fossilis*) fingerling, *Aquaculture Reports*, **32**, 101727 (2023)

35. Rozyński M., Ziomek E., Demska-Zakęś K. and Zakęś Z., Impact of inducing general anaesthesia with MS-222 on haematological and biochemical parameters of pikeperch (*Sander lucioperca*), *Aquac. Res.*, **50(8)**, 2125–2132 (2019)

36. Sayyaf Dezfuli B., Lorenzoni M., Carosi A., Giari L. and Bosi G., Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses, *Frontiers in Immunology*, **14**, 1250835 (2023)

37. Tavares-Dias M., A morphological and cytochemical study of erythrocytes, thrombocytes and leukocytes in four freshwater teleosts, *J. Fish Biol.*, **68(6)**, 1822–1833 (2006)

38. Tesch F.W., Age and growth in Ricker WE (ed.), fish production in fish waters, Oxford Black Well, 98-130 (1971)

39. Wintrobe M.M., In Clinical haematology, Lea and Febiger, Philadelphia, **5**, 202 (1981)

40. Witeska M., Kondera E. and Bojarski B., Hematological and hematopoietic analysis in fish toxicology—a review, *Animals*, **13(16)**, 2625 (2023).

(Received 18th January 2025, accepted 22nd March 2025)